復旧」タグアーカイブ

福岡陥没事故に関する11月26日の沈下報道に関して思うこと

11月26日福岡駅前の陥没事故現場で再び沈下が発生したと報道された。沈下の最大値は7cmであって、福岡市の担当者の報告では、想定内であったと報告されている。

このような沈下は、前のブログで述べた様に、危惧していた通りのものであり、また沈下の起る様相に少し疑問があるので、この件に関し再び意見を述べる。

1.11月26日の沈下に関する報道

① 県警や市によると、8日に陥没事故が起きた市道「はかた駅前通り」の現場で計12カ所、沈下が発生しないか計測していた。今回、沈下が発生したのは陥没現場とほぼ同じ範囲で、路面が最大7センチ沈下している計測結果が出た。けが人はなく、ガス漏れや停電、断水などの情報は入っていないという。

② 午前1時半ごろ、通行止めの基準となる2.4cmの沈下を計測したため、県警に通報し、交通規制を実施。午前3時ごろまで徐々に沈下が続いたが、その後、沈下は確認されず、地割れなどの危険性がないとして通行を再開した。

③ 再開後に記者会見した施工業者の大成建設JV(共同企業体)は、沈下の原因について「埋め戻した部分の下の土砂の緩んだ部分が重みで圧縮された可能性がある」と説明。「これ以上の大幅な沈下についてはないと考えている」と述べた。ただ、大成JVと市ともに「再度の通行止めは想定していなかった」という。引き続き、24時間態勢で沈下の計測を続ける。

2.沈下の原因の究明

① 福岡市や施工業者の説明によると「埋め戻した部分の下の土砂の緩んだ部分が重みで圧縮された可能性がある」と説明。また、「これ以上の大幅な沈下についてはないと考えている」と説明されている。これはどの様な根拠に基づいているのか?

② 11月8日の陥没現場の写真によると、現場は泥水が溜まっており、その下に、所謂、「ヘドロ」と呼ばれる非常に弱い土が堆積していたと想定される。この上に流動土が流し込まれたのであるが、ヘドロの性質や堆積している量が分からないと沈下の推定は出来ない。どの様な地盤を想定されて沈下の予測をされたのか?

また、報告された沈下量の増加の様相が少しおかしいのではないか?

③ 堆積しているヘドロはある程度粘性土の性質をもっていると考えられるが、沈下は復旧から15日程度では発生しないで、かなり時間をかけて発生してくるものと考えられる。

④ この他にも、流動土の上で、埋め立てに使われた土砂の性質も非常に重要である。また、締め固め土砂の最適含水比と施工時の含水比等は非常に重要なデータであり、今後起るかもしれない沈下量の推定に必要である。

⑤ 既に事故究明のために必要な十分なデータを収集されていれば良いのだが、この件に関しあまり報道されないので、念の為、これから必要なことを書きとめる。

3.これから復旧工事に向けて必要と考えること。

駅前の陥没事故に対し、あまりにも見事に、速やかに復旧工事が行われ、事故の大きさに比べ、犠牲者や付随した事故がなかったものであるから、見落とされがちだが、今回の事故は、平面的に30mx30m、深さ15m、流出土量10,000mという、市街地ではあってはならない大事故です。予測出来ない不可抗力ということでは済まされません。

更に、事故の後に計画通りの地下鉄を構築するという難しい大工事を完成しなければならない訳だから、原因究明や付近の調査など今やらねばならないことが数多く有ると思っている。そこで、自分なら、今やっておきたい事項を記しておく。

① 事故前の付近の種々のデータの収集と分析

  • 崩落事故前の岩盤表面コンター図の作成と岩盤層強度や地下水位の調査
  • 陥落現場付近には幾つかのビルが建設されており、各ビルの建設には地盤調査がなされていたと思う。これらのデータと地下鉄の地盤調査結果を合わせれば、所謂、岩盤と言われている層の崩落事故前の表面コンター図は得られると思う。
  • 岩盤と言われている層の性質と強度
  • これと岩盤層の強度や地下水の位置が分かれば、崩落事故前の地下鉄の掘削に必要なデータが得られる。

② 十分な地盤調査の実施

  • 崩落事故後、現場で地盤調査が実施されているようには見えない。
  • 事故現場の原因の究明のためにも、これからの地下鉄工事を安全に進めるためにも、現場で十分な地盤調査を実施する必要がある。

③ ビルを含む現場の変形図の作成と計測の継続

  • 崩落現場とビルの間には、ビルの建設時に使われたと思われる地中壁が存在していて、ビル側の崩落を防いでいた。しかしこの壁はビルの地下部分を掘削するために使われたもので、この壁にかかる力の方向は今回の崩落事故時に発生した力の方向と全く逆と考えられる。すなわち、ビルからの土圧が支保工の存在しない方向へ働き、幾分水平変形を起こしたかもしれない。
  • 10m以上直立した地中壁がビル側から崩落側に押された場合を考えると、壁が倒壊しなかったことは非常に幸運なことであったとも考えられる。
  • 以上のことから、ビルやインフラ等が事故前に比べると水平変形をしていないか、地下鉄工事再開前に調べておく必要がある。

④ ビルの地下内部調査

  • 前述した地下壁は全面同じ強度を持ったものではないと思う。水平的に強いところと弱いところがあって、全体として建設時に支保工の力を借りて、ビルの内部掘削に耐えた壁である。今回の崩落現場で、ビル側から若干土砂や水が流れ出ているところがみられた。
  • 10,000m3もの土砂が流れ出た時、ビル側からは全く出ていないというのも不自然のように思えるので、部分的に流出したかどうか、調査が必要である。

4.これからのトンネル工事の調査、設計、施工、設計監理について

① 今回の様な市街密集地の事故は絶対再び起こしてはならない。今回の事故で以前にも増して難工事になった地下鉄工事の為に、各方面の技術を結集して当たられることが望まれる。

② 10,000mに及ぶ土砂がトンネル内にどのように流れ込んだのか、現在地下水の流入が有るのか調査し、必要なら調査を継続する必要がある。

③ 土は一度破壊されると以前とは全く異なった弱い物質に変化する。従って、必要な地盤調査は全て一からやり直す覚悟が必要である。

④ 以上の様な十分な現場のデータを反映し、解析によってトンネル掘削時の地盤の応力変化を求める。最近の解析技術の発展を考慮すれば現実的な結果は得られるものと考える。

⑤ いろいろなトンネルの施工方法も考えられるが、十分に安全な施工方法を用いることが肝要である。この際、費用や施工時間より安全性が最も重要である。

⑥ 更に安全を期するために、計測施工法の導入も必要である。

⑦ 独立した施工管理のチーム作り、計測や施工に携わる技術者と良く相談しながら安全性を確認してトンネルが無事完成することを望む。

⑧ トンネルの施工中に、専門委員会の先生方にも適宜相談して頂くよう、お願いしておく必要がある。

以上

福岡博多駅陥没事故に思うこと

2016年11月8日に発生した福岡博多駅前陥没事故では、福岡地方の建設関係の方々が総力を結集されて復旧工事が行われ、埋め戻しやインフラを復旧させて13日に地表面まで埋め戻され、14日にはほぼ復旧の運びとなりました。工事関係者が力を結集されて、こんなに早く工事を完成されたことは本当に日本の建設業の実力を示され、素晴らしいことだったと思っています。しかし、今、道路が陥没していく映像や陥没した地盤が非常に早く復旧していくことに目を奪われているが、これからが問題で、非常に重要なことが残されています。

小職は、個人としては十分な資料を集めることはできませんが、マスコミで報道されていることに少し疑問があり、この様な事故が起きた時に一般的に問題となる事項を記しておきたいと思います。

 

1.地盤内にトンネルを構築した場合、地中の応力とトンネル外側に生じる塑性域

① 応力を持つ地盤内に円形状の断面を持つトンネルを掘削すると、円周方向と円周直角方向の応力差から掘削の内面から塑性域(簡単には地盤が軟らかくなり、変形が進行する領域)が生じる。この塑性域の厚みは地盤の強度によって異なり、強度が大きければ塑性域が小さく、強度が小さければ大きくなる。

② 強度にバラツキが有れば塑性域の厚みもバラツキ、時間依存性のある弾塑性体では時間と共に塑性域が広がっていくこともある。

③ この為、トンネルを構築する周辺地盤の強度や変形特性は非常に重要である。また、地盤内の応力が決定されるトンネルの深さ、硬い地盤の表面の深さやトンネル上面までの厚さも非常に重要である。

2.陥没事故現場の地盤

① 新聞やテレビ等のマスコミの報道によりますと、トンネルを掘削している地盤は岩盤となっているが、土丹と呼ばれるものではないでしょうか?

② 岩盤層の表面はトンネル掘削方向に対して同じ深さが続いているのでしょうか?

③ 以上の点はトンネル構築上非常に重要である。

3.土丹層の性質

① 土丹は粘土が非常に長い年月で固結され、非常に硬い岩盤状になったものだと考えている。土丹層の深いところでは非常に強固なもので、周辺のビルのような基礎杭を支持するに十分な強度を持っていると考えられる。

② しかし、土丹層の表面近くでは、長年の間に地下水や応力の変化等の影響で性質が変化して強度が弱くなり、また、弱くなる程度は土丹の性質によって変化する、と考えられる。従って、強固な土丹層の表面は微妙に変化するものと考えられる。

③ 更に、土丹層で、今までかかっていた応力が解放される場合や掘削表面が空気に晒されると土丹層の強度が弱くなることも考えられる。

4.地盤調査について

① 地盤調査法で最もポプラーな方法は標準貫入試験と言われるもので、質量63.5kgの重りを76cmの高さから自由落下させてサンプラーを30cm貫入するに要する打撃回数(N値)を求めるものである。

② この試験では、砂の性質を比較的正確に求めることが出来るが、粘土の強度や沈下性状は正確に求めることは出来ない。しかし、非常に早く、安価に実施できることから一般的に良く使われている。

③ このように非常に早く安価な試験にも拘わらず、一般的にプロジェクトの全体の費用に比べ、調査に使われる費用は非常に小さい傾向がある。

④ 特に、道路やトンネルのように延長が長いプロジェクトではボーリングの数が限られてくることが多い。

⑤ 一方、陥没現場付近は多くのビルが建設されており、地盤調査結果も多数存在していると考えられるので、これらの調査結果を収集すれば地盤の概要は十分得られるものとかんがえられる。

⑥ 以上、新しく得られたデータと既往のデータからかなり正確に付近の地盤の概要が把握できると考えられる。

⑦ 当該の工事は都市部の地下鉄工事で、特に、硬い地盤の上部でトンネルとの厚みが少ない場合であり、出来るだけ多くの資料の収集や精密な調査が必要と思われるが、十分なされたのでしょうか?

5.NATM工法の原理と当該のトンネルへの適用性

① 掘削した部分を素早く吹き付けコンクリートで固め、ロックボルトを内部の安定した岩盤層まで打ち込むことにより、すなわち、幾分不安定になるトンネル内面付近と安定している地山とを結びつけて全体として安定した地山を構築し、地山自体の保持力を利用してトンネルを安全に掘削する工法と考えている。

② 今回の報道によると、トンネルの上面からわずか2メートルのところに岩盤と言われる層の上面があり、トンネルの上半分を掘削中で、半径は数メーター、また、掘削工法はNATMが使われていたと報道されている。

③ この場合、先ず疑問に思うことは、トンネル上部の硬い層の層厚が2メートルで、数メートルの幅のトンネルを掘削する時、NATMの掘削理論が使えるのだろうか?

④ NATMでは、単にロックボルトを内部に打ちこむだけでなく、真の目的は安定した地山自体の保持力が発揮できる状態にすることである。

⑤ NATM工法は経済的な(安い)工法である。トンネルは基本的には完成時は施工法によらず安定であり、安全であればコストをかけず施工するのがよいが、この場合費用は主に市民国民の税金であろう。担当者は予算に縛られたかもしれないが、正しい施工や力学理論の適用により、コストを削減しながらも適正な調査や施工にコストをかける必要があると思う。発注担当者、施工者が前もって分かっている陥没のリスクの程度をどこまでとるかの判断の妥当性も問題であろう。

6.陥没部の復旧前後の現場の状態

① 報道された映像から判断すると、陥没現場のビル側は10m程度直立している。

② 土、特に砂質土は直立することが出来ないので、ビルの工事中に残されたものか?土留め壁が存在していたと考えられる。

③ この様な状態であれば、この壁はビル側から陥没現場側に一時的ではあるが土圧受けることになる。

④ 陥没現場の道路に面したビルで、基礎形式は不明であるが、鉛直方向は杭で支持されているはずなので、沈下などの影響は少ないと考えられるが、水平方向は土中の応力が減少して土の強度も弱くなり、また、地下水圧も変化するので、何らかの影響が出ると考えられる。

⑤ このような事故が起った時、事故発生後復旧工事が終わるまで、例えば、土留め壁、ビルや地盤等の変形を測定すれば原因究明に役立つものである。

⑥ 今回の復旧工事で、陥没の底面には濁水で満たされていて底面の状況が分からないまま、流動土を流し込まれ復旧を急がれました。現場が主要な道路上であった事を考えると、一つの立派な対策であったと考えられる。

⑦ しかし、濁水の底面に溜まっていたであろうと推定されるヘドロの厚さ、流動土が入っていかない空間の存在、上部の土砂の締め固め方法など、これから長期にわたる変形等が生じる可能性もある。

⑧ 今後は、「降雨や地下水の回復が長期的に付近のビルや地盤にどのように影響を及ぼすか」について、付近の十分な計測がなされ、事故原因の究明に役立たせることが望まれる。